User:Schenad/波尔 - 范·列文定理:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
第60行: 第60行:
Therefore, <math>\langle\mu\rangle=0</math>.
Therefore, <math>\langle\mu\rangle=0</math>.


== 玻尔-范·列文定理的应用 ==
== Applications of the Bohr–van Leeuwen theorem ==
The Bohr–van Leeuwen theorem is useful in several applications including [[等离子体|plasma physics]], "All these references base their discussion of the Bohr–van Leeuwen theorem on Niels Bohr's physical model, in which perfectly reflecting walls are necessary to provide the currents that cancel the net contribution from the interior of an element of plasma, and result in zero net diamagnetism for the plasma element."<ref>{{Harvnb|Roth|1967}}</ref>
The Bohr–van Leeuwen theorem is useful in several applications including [[等离子体|plasma physics]], "All these references base their discussion of the Bohr–van Leeuwen theorem on Niels Bohr's physical model, in which perfectly reflecting walls are necessary to provide the currents that cancel the net contribution from the interior of an element of plasma, and result in zero net diamagnetism for the plasma element."<ref>{{Harvnb|Roth|1967}}</ref>



2023年5月16日 (二) 22:55的版本

玻尔 - 范·列文定理(Bohr–van Leeuwen theorem)是统计力学领域中的一个定理。定理的基本阐述是:在热力学和经典力学的框架下,磁化強度热力学平均英语Ensemble average (statistical mechanics)恒等于零[2]。这意味着固体中的现象完全是一种量子力学效应;经典物理学无法对抗磁性做出解释。

历史

玻尔 - 范·列文定理最初是由尼尔斯·玻尔于1911年发现的,玻尔将其写入了自己的博士论文[3]。1919年,Hendrika Johanna van Leeuwen英语Hendrika Johanna van Leeuwen重新发现了这一定理,她也将此定理写入了自己的博士论文[4]。1932年,約翰·凡扶累克在他的一本关于电极化率和磁化率的书中规范化且拓展了玻尔最初的理论[1]

这一发现的重要之处在于无法从經典物理學推导出順磁性抗磁性铁磁性。因此,上述的磁现象必须用量子力学来解释[5]。玻尔 - 范·列文定理也许是玻尔在1913年打破传统的经典理论,提出半经典的玻尔模型的原因之一[6]

证明

根据直觉的初步证明

玻尔-范·列文定理适用于无法旋转的孤立系统(如果一颗孤立的恒星暴露在磁场中,该恒星可能会开始旋转)[7]。如果在给定的温度和磁场下只有一个唯一的热平衡状态,并且在施加磁场后,我们让系统有足够的时间回归到平衡态,则磁化现象不会出现。

The probability that the system will be in a given state of motion is predicted by Maxwell–Boltzmann statistics to be proportional to , where is the energy of the system, is the Boltzmann constant, and is the absolute temperature. This energy is equal to the kinetic energy for a particle with mass and speed and the potential energy.

The magnetic field does not contribute to the potential energy. The Lorentz force on a particle with charge and velocity is

where is the electric field and is the magnetic flux density. The rate of work done is and does not depend on . Therefore, the energy does not depend on the magnetic field, so the distribution of motions does not depend on the magnetic field.

在零磁场下,由于系统无法旋转,系统中带电粒子运动的统计净值为零,因此平均磁矩为零。又因为粒子运动的分布不依赖于磁场,所以任何磁场中处于热平衡状态下的磁矩仍然为零。

更加形式化的证明

So as to lower the complexity of the proof, a system with electrons will be used.

This is appropriate, since most of the magnetism in a solid is carried by electrons, and the proof is easily generalized to more than one type of charged particle.

Each electron has a negative charge and mass .

If its position is and velocity is , it produces a current and a magnetic moment

The above equation shows that the magnetic moment is a linear function of the position coordinates, so the total magnetic moment in a given direction must be a linear function of the form

where the dot represents a time derivative and are vector coefficients depending on the position coordinates .

Maxwell–Boltzmann statistics gives the probability that the nth particle has momentum and coordinate as

where is the Hamiltonian, the total energy of the system.

The thermal average of any function of these generalized coordinates is then

In the presence of a magnetic field,

where is the magnetic vector potential and is the electric scalar potential. For each particle the components of the momentum and position are related by the equations of Hamiltonian mechanics:

Therefore,

so the moment is a linear function of the momenta .

The thermally averaged moment,

is the sum of terms proportional to integrals of the form

where represents one of the moment coordinates.

The integrand is an odd function of , so it vanishes.

Therefore, .

玻尔-范·列文定理的应用

The Bohr–van Leeuwen theorem is useful in several applications including plasma physics, "All these references base their discussion of the Bohr–van Leeuwen theorem on Niels Bohr's physical model, in which perfectly reflecting walls are necessary to provide the currents that cancel the net contribution from the interior of an element of plasma, and result in zero net diamagnetism for the plasma element."[8]

Diamagnetism of a purely classical nature occurs in plasmas but is a consequence of thermal disequilibrium, such as a gradient in plasma density. Electromechanics and electrical engineering also see practical benefit from the Bohr–van Leeuwen theorem.

注释

  1. ^ 1.0 1.1 van Vleck 1932
  2. ^ 约翰·凡扶累克对玻尔 - 范·列文定理的陈述是:“At any finite temperature, and in all finite applied electrical or magnetical fields, the net magnetization of a collection of electrons in thermal equilibrium vanishes identically.”[1](参考译文:在任何有限的温度、有限的外加电场或磁场的条件下,处于热力学平衡的一系列电子的净磁化强度相互抵消。)
  3. ^ Bohr 1972
  4. ^ van Leeuwen 1921
  5. ^ Aharoni 1996
  6. ^ van Vleck 1992
  7. ^ Feynman, Leighton & Sands 2006
  8. ^ Roth 1967

参考资料

外部链接

[[Category:经典力学]] [[Category:物質內的電場和磁場]] [[Category:物理定理]] [[Category:统计力学]]